Central Bank Digital Currencies -Benefits versus Costs

Michael Kumhof, Bank of England

Co-authors: John Barrdear, Bank of England Clare Noone, Reserve Bank of Australia

The Future of Money Conference Stockholm, June 15, 2019

Disclaimer

The views expressed herein are those of the authors, and should not be attributed to the Bank of England or the Reserve Bank of Australia.

1 Introduction

- The emergence of the distributed ledger technology (DLT) and of Bitcoin was a watershed moment in the history of 'e-monies'.
- It may, for the first time, be <u>technically feasible</u> for central banks to offer universal access to their balance sheet.
 - Existing centralized RTGS systems: Not robust for universal access.
 - New decentralized DLT systems: Can potentially solve this problem.
- Question: Is universal access economically desirable?

2 What is a Central-Bank Digital Currency (CBDC)?

- Access to the central bank's balance sheet.
- Availability: 24/7.
- Universal: Banks, firms and households.
- **Electronic:** For resiliency reasons, probably using DLT.
- National-currency denominated: 1:1 exchange rate.
- Issued only through spending or against eligible assets: Government bonds.
- Interest-bearing:
 - To equate demand and supply at 1:1 exchange rate.
 - Second tool of countercyclical monetary policy.
- Coexisting with the present banking system.

3 The Model

3.1 Overview

- Based on Benes and Kumhof (2012) and Jakab and Kumhof (2015, 2018).
- The non-monetary model elements are standard.
- Households:
 - Deposits: Created by banks.
 - CBDC: Created by central bank.
 - Deposits and CBDC jointly serve as medium of exchange.
- Banks: Create new deposits by making new loans.
- Government:
 - Fiscal policy.
 - Traditional monetary policy.
 - CBDC monetary policy.

3.2 Monetary Policy - The Policy Rate

- Standard forward-looking Taylor rule for the interest rate on reserves.
- This element is identical to the current policy environment.

3.3 Monetary Policy - CBDC

- 3.3.1 Quantity Rule for CBDC
 - Fix the quantity of CBDC, let CBDC interest rate clear the market.
 - Countercyclicality: Remove CBDC from circulation in a boom.

3.3.2 Price Rule for CBDC

- Fix interest rate on CBDC, let the quantity of CBDC clear the market.
- Countercyclicality: Pay lower interest rate on CBDC in a boom.

4 Steady State Effects of the Transition to CBDC

- Assumptions:
 - Issue CBDC against government debt.
 - Magnitude: 30% of GDP.
- Results:

	Steady State
	Output Effect
1. Lower Real Policy Rates	+1.8%
2. Higher Deposit Rates Relative to Policy Rates	-0.9%
3. Reductions in Fiscal Tax Rates	+1.1%
4. Reductions in Liquidity Tax Rates	+0.9%
Total	+2.9%

Reasons for Steady State Output Gains

1. Lower real interest rates:

- Assumption: CBDC issued against government debt.
- CBDC is not defaultable, government debt is.
- CBDC carries a lower interest rate than government debt.

2. Lower fiscal tax rates:

- Much larger central bank balance sheet.
- Therefore much larger seigniorage flows.
- Also: Lower interest costs (see above).
- Assumption: Seigniorage is used to réduce distortionary taxes.

3. Lower liquidity tax rates:

- Modern money is 95%+ created by private banks.
- This is costly: Spreads, regulation, bank market power, collateral.
- CBDC can significantly reduce these costs.
- Result: Greater money supply at reduced cost.

Transition to Steady State with CBDC solid line = actual transition ; dotted line = change in long-run steady state

5 Countercyclical CBDC Rules

Solid Line = Policy Rate, Dotted Line = Policy Rate minus Fixed Spread, Dashed Line = CBDC Rate

6 Four Key Design Principles for CBDC

- 1. CBDC pays an adjustable interest rate
- 2. No on-demand convertibility of reserves into CBDC
- 3. No on-demand convertibility of bank deposits into CBDC
- 4. CB only issues CBDC against eligible securities

6.1 CBDC Pays an Adjustable Interest Rate

• r^{policy} (policy rate) does not equal r^{cbdc} (CBDC rate):

- Reserves and CBDC both provide a risk-free store of value.
- But CBDC is also a medium of exchange, with convenience yield cy.

$$r^{policy} = r^{cbdc} + cy$$

- Arbitrage by banks would not cause r^{policy} and r^{cbdc} to converge.
- The central bank can therefore set r^{policy} and r^{cbdc} separately.
- This allows the CBDC market to clear through interest rates, without large balance sheet or price level fluctuations.

6.2 No On-Demand Convertibility of Reserves into CBDC

- Assume single bank guarantees CBDC-reserves convertibility:
 - Depositors who want to run can transfer their deposits to this bank.
 - Incoming deposits are accompanied by a reserve gain for this bank.
 - This bank can exchange the reserves for CBDC at the CB.
 - Then it can pay out the depositors in CBDC.
 - Other banks are forced to settle outflows in reserves.
- This can become a "run through the back door".
- It will not happen if the CB does not exchange reserves for CBDC.
- Additional benefits:
 - 1. CB can keep controlling reserves and thereby the policy rate.
 - 2. CBDC can have different functionality from reserves.
 - 3. CB gains a second policy tool in the CBDC interest rate.

6.3 No On-Demand Convertibility of Deposits into CBDC

- Why is convertibility dangerous?
 - Guarantee by banks is only credible with back-up from CB.
 - But CB guarantee is unlimited lender of last resort commitment.
 - This allows near-instantaneous system-wide runs to CB money.
 - Scale of LoLR support is potentially much larger than in traditional run.
- Why is convertibility unnecessary for parity?
 - It is sufficient for CB to match CBDC demand and supply.
 - Investors can obtain additional CBDC against eligible securities at par.
- Is convertibility necessary for confidence in bank deposits?
 - How does the opening of the door to bank runs ensure confidence?
 - Confidence is ensured through regulation, deposit insurance, etc.

6.4 CB only Issues CBDC against Eligible Securities

- Principally government securities.
- This is standard practice for issuance of government money today.

The Private CBDC-Deposits Market

- Banks can choose whether to convert deposits to CBDC.
- But in addition to banks there is a private CBDC-deposits market:
 - Agents can freely trade deposits against CBDC in this market.
 - The private market can freely obtain additional CBDC at the CB.
 - But only:
 - $\ast\,$ At the posted CBDC interest rate.
 - * Against eligible securities.
- A run on the entire banking system via CBDC becomes impossible.

7 Conclusions

- CBDC has significant benefits \implies further research is worthwhile.
- 1. Steady state efficiency:
 - Lower interest rates, higher seigniorage, more and cheaper liquidity.
 - Increase in steady-state GDP could be as much as 3%.
- 2. Business cycle stability:
 - Second policy instrument.
 - Improved ability to stabilize inflation and the business cycle.
- 3. Financial stability:
 - CBDC should reduce many financial stability risks.
 - But if it is not designed well it may introduce others.
 - The "run risk" can be mostly eliminated by sound system design.
- Critical issue: Design of a smooth transition.